A structural analysis of asymptotic mean-square stability for multi-dimensional linear stochastic differential systems

نویسندگان

  • Evelyn Buckwar
  • Thorsten Sickenberger
چکیده

We are concerned with a linear mean-square stability analysis of numerical methods applied to systems of stochastic differential equations (SDEs) and, in particular, consider the θ-Maruyama and the θ-Milstein method in this context. We propose a technique, based on the vectorisation of matrices and the Kronecker product, to deal with the matrix expressions arising in this analysis and provide the explicit structure of the stability matrices in the general case of linear systems of SDEs. For a set of simple test SDE systems, incorporating different noise structures but only a few parameters, we apply the general results and provide visual and numerical comparisons of the stability properties of the two methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type

This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...

متن کامل

About stability of nonlinear stochastic difference equations

Using the method of Lyapunov functionals construction, it is shown that investigation of stability in probability of nonlinear stochastic difference equation with order of nonlinearity more than one can be reduced to the investigation of asymptotic mean square stability of the linear part of this equation. Difference equations usually appear by investigation of systems with discrete time or by ...

متن کامل

Numerical solution of second-order stochastic differential equations with Gaussian random parameters

In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...

متن کامل

Mean-Square and Asymptotic Stability of the Stochastic Theta Method

Stability analysis of numerical methods for ordinary differential equations (ODEs) is motivated by the question “for what choices of stepsize does the numerical method reproduce the characteristics of the test equation?” We study a linear test equation with a multiplicative noise term, and consider mean-square and asymptotic stability of a stochastic version of the theta method. We extend some ...

متن کامل

Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010